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Abstract

This paper examines the effect of retail chain price synchronization on the ex-
tent to which nominal shocks have real effects on the economy. I develop a menu
cost model in which stores belong to retail chains. However, retail chains have im-
perfect information over store-level state variables when determining prices. This
constraint affects how firms optimally choose the timing of their price changes
also known as the selection effect. I find that selection effects are more than
twice as large in the presence of retail chains compared to the standard menu
cost model. This relationship suggests that the standard menu cost model over-
estimates the degree of monetary non-neutrality by ignoring synchronization in
retail chain pricing.
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1 Introduction

Selection effects—the concept that firms optimally choose the timing of their price changes—

are key determinants of how the economy responds to aggregate nominal shocks. As selec-

tion effects increase, firms respond more to aggregate nominal shocks which mitigates their

impact. Consequently, the degree of monetary non-neutrality is not directly linked to micro-

level price stickiness as non-neutrality also depends on how firms determine to change their

price.

This paper examines selection effects in the context of retail chain pricing using a menu

cost model. It is commonly assumed in menu cost models that firms set their prices au-

tonomously.1 However, stores belonging to the same retail chain (e.g. Kroger, Publix) set

nearly identical prices in practice. Additionally, retail chains synchronize the timing and

magnitude of their price changes across stores violating the independence assumption.

I find that accounting for retail chains more than doubles the degree of selection effects

relative to the standard menu cost model. This relationship suggests that the standard menu

cost model overestimates the degree of monetary non-neutrality by ignoring synchronization

in retail chain pricing. The intuition behind this result lies in the store’s pricing decision. In

the standard model, stores decide whether or not to change their price contingent on their

idiosyncratic productivity and their current price relative to the aggregate price level. Firms

then change their price if the expected profit gains outweigh the menu cost.

Introducing retail chains to the model adds another component to the store pricing

decision. First, store-level productivity shocks include a common retail chain component.

This common component helps account for the price synchronization seen in the data for

stores belonging to the same chain. I also assume that the retail chain occasionally sets the

store’s price. However, when determining the store’s price, the retailer cannot observe the

store’s productivity and thus chooses the store’s price based on the retailer-level productivity.

1See Sheshinski and Weiss (1977); Golosov and Lucas (2007); Nakamura and Steinsson (2008) for examples
of pricing in standard menu cost models.
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The combination of these two assumptions leads to the amplified selection effect in the retail

chain model.

Pricing in this environment can be interpreted as a two-step process. First, the retailer

sets a target price for all stores belonging to its chain using chain-level state variables.

Second, stores choose to keep the retail chain price or set their own price. The assumptions

above serve as a reduced form modelling approach for the cost that a store pays to deviate

from the chain price. Thus, firms in the retail chain model face a “constrained” optimization

problem whereas firms in the standard model are “unconstrained”. This constraint causes

stores to be less responsive to their idiosyncratic productivity shocks (as it is more costly)

and more responsive to aggregate shocks.

I estimate selection effects by simulating both the standard model and retail chain model

calibrated to scanner-level data for over 600 goods sold in the United States from 2001-2007.

Data come from Information Resources Inc. (IRI) which records the weekly revenue and

quantity sold for each product at the store level. Importantly, the dataset records the retail

chain to which each store belongs.

Before calibrating the model, I document descriptive evidence of retail chain price syn-

chronization. I begin by documenting synchronization in the timing of price changes. I find

that if one store in a retail chain changes their price for a good in a given week, there is a

70% probability that at least half of stores within that chain change their price during the

same week (averaged over goods and chains). The conditional probability remains over 40%

with the increased restriction that all stores within the chain change prices. Requiring that

all price changes be in the same direction yields an estimate of about 30% for both price

increases and decreases. I also find that these price changes are similar in magnitude. A

variance decomposition shows that 62% of price dispersion from a store’s average price can

be explained by chain-week fixed effects on average over goods while the idiosyncratic store

component accounts for only 25% of price variation. This result is prevalent across most

goods with the chain-week component explaining at least half of the price variation for 625
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of the 655 goods in the sample.

The retail chain model is then calibrated to match several price-setting statistics in-

cluding the chain-week component of the variance decomposition for each good. Thus, the

empirical variance decomposition serves as a key factor in determining the probability that

a retail chain sets an individual store’s price in the model (i.e. the degree of the retail

chain “constraint”). I then simulate store-level price paths for each of the 655 goods using

the retail chain model. After simulating the retail chain model, I perform a counterfactual

analysis where stores do not adhere to the retail chain constraint. Each store faces the same

inflation process and analogous productivity process as in the retail-chain simulation. Thus,

differences between the models are not driven by different productivity draws and are solely

driven by each store selecting its unconstrained optimal price in each period.

I measure selection by regressing the change in a store’s log price on the change in

the aggregate price level controlling for changes in store-level productivity. The partial

equilibrium nature of the model facilitates this regression as store-level price changes do not

feedback into the aggregate price level which follows an exogenous process. The coefficient

on the aggregate price level thus serves as an estimate of the responsiveness of store-level

prices to exogenous changes in the aggregate price level (i.e. the selection effect). The

weighted mean estimates for the retail chain model and standard model are 0.25 and 0.09,

respectively. These estimates suggest that a 1% increase in the aggregate price level leads to

selection effects that are more than twice as large in the presence of retail-chains compared

to the standard model (0.25% versus 0.09%).

These results build on our knowledge of selection effects in sticky-price models. The

Calvo (1983) model of price adjustments represents one extreme in sticky price models. In

the Calvo model, a subset of firms are selected at random each period to change their price.

Thus, as noted in Nakamura and Steinsson (2013), firms cannot optimally time their price

changes, and aggregate shocks have no effect on how many and which firms change their

price. Caballero and Engel (2007) illustrate that aggregate shocks only affect the intensive
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margin of price adjustment in the Calvo model (i.e. only the magnitude of price changes

is affected for firms that were already going to adjust their price) which leads to large real

effects of monetary shocks.

Menu cost models such as the one in this paper introduce an extensive margin of price

adjustment (Caballero and Engel, 2007). Thus, aggregate shocks also affect how many

and which firms change their price referred to as the selection effect in Golosov and Lucas

(2007). In general, the extensive margin of adjustment leads nominal shocks to have smaller

real effects on the economy compared to the Calvo model. For example, nominal shocks

only produce 20% of the real effects in Golosov and Lucas (2007) compared to the Calvo

model. However, the extent of the real effects varies significantly depending on the modelling

assumptions used. Golosov and Lucas (2007) commonly serves as the lower bound where

additional assumptions typically predict effects closer to those in the Calvo model (Lep-

tokurtic shocks and scale economies: Midrigan (2011), Alvarez and Lippi (2014), Bonomo

et al. (2020); Random menu costs: Dotsey et al. (1999); Sectoral heterogeneity: Nakamura

and Steinsson (2010)).

In contrast to the examples above, my results suggest that retail chain pricing decreases

the real effects of nominal shocks. Nakamura and Steinsson (2010) help illustrate the intuition

for this result in menu cost models. They show, conditional on the same frequency of

price change, reducing the variance of stores’ idiosyncratic productivity shocks leads to less

real effects of nominal shocks. This is a result of the average inflation rate becoming a

more important determinant in stores’ pricing decisions. Golosov and Lucas (2007) also

illustrate this result and show that their setup converges to Caplin and Spulber (1987) in

the absence of idiosyncratic shocks. The Caplin and Spulber (1987) model represents the

opposite extreme of the Calvo model in which the aggregate price level is completely flexible

even in the presence of micro price stickiness. Thus, nominal rigidities have no real effect

on the economy. Although the partial equilibrium nature of the model does not allow me to

directly estimate the real effects of nominal shocks, I show that my regression specification
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captures the relationship described by Nakamura and Steinsson (2010) and Golosov and

Lucas (2007). This relationship suggests that the standard menu cost model overestimates

the degree of monetary non-neutrality by ignoring synchronization in retail chain pricing as

illustrated by my regression results.

This paper also builds on the literature of retail chain pricing. DellaVigna and Gentzkow

(2019) and Adams and Williams (2019) show that chains often set prices uniformly across

stores or according to a small set of retail pricing zones. Similarly, online and offline prices

for a given retailer tend to be synchronized (Cavallo, 2017, 2019). Previous studies have

found that chains predominantly account for price-level differences and variation in the

frequency of price changes (Daruich and Kozlowski, 2021; Nakamura et al., 2011). The

variance decomposition in this paper is most closely related to that in Nakamura (2008)

which focuses on time series variation in prices and finds similar results.

Lastly, this paper helps provide a rationale for the stickiness of local prices to local

conditions (Daruich and Kozlowski, 2021; Gagnon and López-Salido, 2020; DellaVigna and

Gentzkow, 2019). This paper is most closely related to Daruich and Kozlowski (2021) who

develop a model of multi-region firms with uniform pricing. Their paper finds that local

elasticities are likely biased estimates of aggregate elasticities when accounting for uniform

pricing in retail chains. My paper does not explicitly examine the impact of retail chain

pricing on regional versus aggregate shocks. Instead, my paper highlights the degree of

selection effects with versus without synchronization in retail chain pricing. As retail chain

synchronization increases, stores respond less to their idiosyncratic shocks and respond more

to aggregate shocks which helps rationalize the effects found in Gagnon and López-Salido

(2020).

The rest of the paper proceeds as follows. Section 2 describes the IRI scanner dataset.

Section 3 presents descriptive statistics of price synchronization within retail chains. Section

4 introduces the standard menu cost model and the retail chain extension. Section 5 uses

model simulations to estimate selection effects. Section 6 concludes.
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2 Data

My primary analysis uses the Information Resources Inc. (IRI) retail scanner dataset from

2001-2007. The IRI records the total weekly revenue and quantity sold for over 100,000

products and 3,000 stores.2 Products are defined by their Universal Product Code (UPC),

and stores are defined as a key provided by the IRI. The average price of product i in store j

for the week t is computed as the total revenue (Revijt) divided by total quantity sold (Qijt),

Pijt =
Revijt
Qijt

.

2.1 Sample Formation

2.1.1 Stores

The IRI provides data for both grocery and drug stores. My primary sample consists only

of grocery stores which are a majority of the dataset. Each grocery store may belong to

a specific retail chain (e.g. Kroger, Publix). In order to analyze the effect of retail chain

pricing, I require that stores (1) belong to a retail chain, (2) do not switch chains over time,

(3) and are open for more than one year.

Panel A of Table 1 highlights the effects of these requirements. The first restriction

facilitates the variance decomposition presented in the next section. Only 11 of the over

2,000 grocery stores in the dataset do not belong to a retail chain. The second restriction

helps account for pricing behavior related to retail chain switching and reduces the number

of stores in the sample by one-third. DellaVigna and Gentzkow (2019) conduct an event-

study analysis and show that pricing behavior shifts substantially when stores switch chains

which could bias the results of the variance decomposition. The final requirement that stores

remain open for more than one year helps to remove pricing decisions that may be related to

the opening and closing of a particular store. Overall, the store requirements have a strong

effect on the total number of stores which reduce from 3,150 to 1,234. This effect is more

2A complete description of the dataset can be found in Bronnenberg et al. (2008).
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Table 1: Summary Statistics of IRI Data

Panel A: Store Requirements

All Stores Grocery Stores Belong to Chain Do not Switch Chain In Sample > 1 Year

Number of Stores 3,150 2,378 2,367 1,534 1,234
Number of Chains 147 128 127 119 101

Panel B: Sample Formation

Stores Chains Products Categories Observations

Initial Sample 3,150 147 105,929 31 1,367,985,544
Store Requirements 1,234 101 91,102 31 656,570,883
Product Sold by at least half of Chains 1,184 99 7,342 31 360,875,433
Product Sold for at least half of store-weeks 1,123 99 655 29 60,698,877

Note: This table presents summary statistics of the IRI data. Panel A presents the effects of the store-level
requirements on the total number of stores and chains in the sample. Panel B presents total counts for both
stores and products throughout the complete sample formation.

modest for the number of retail chains which reduces from 147 to 101.

2.1.2 Products

I further refine the sample through several product restrictions. I require that products (1)

are carried by at least half of the chains and (2) are sold for at least half of store-weeks in

a given year. These requirements help focus the sample on a set of widely available and

commonly sold products. They also help avoid retail chain specific products.

Panel B of Table 1 documents the total effect of both the store and product requirements

on the final sample of observations. The initial sample contained information for over 100,000

products. The store requirements had a relatively small effect on the total number of prod-

ucts (91,102) compared to the product requirements which reduced the final sample to 655

goods. The product requirements also removed about 100 stores. The final sample contains

1,123 stores belonging to 99 retail chains which sell 655 products across 29 categories.

2.2 Retail Chain Pricing

Importantly, the IRI dataset records the retail chain r that each store j belongs to. This

allows me to document several stylized facts about retail chain pricing. The first fact is that
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Figure 1: Example of Retail Chain Price Synchronization

Note: This figure plots an example of price synchronization within a retail chain. Each point on the y-axis
represents an individual store belonging to the retail chain. Darker (lighter) shades represent higher (lower)
prices. Missing values are represented by white space.

retail chains implement uniform pricing—the phenomenon that stores belonging to the same

retail chain set nearly identical prices regardless of their respective market characteristics.

Furthermore, the timing and magnitude of their price changes are often identical.

Figure 1 graphs an example of uniform pricing for a product belonging to the sugar/sugar

substitute category within one retail chain. Each point on the y-axis represents an individual

store belonging to the retail chain. Darker (lighter) shades represent higher (lower) prices.

Missing values are represented by white space.

We see that there is small (or zero) price variation across stores for most weeks. Stores

seldom make idiosyncratic price changes with most price changes occurring across all stores

within the chain. Furthermore, prices change by the similar magnitudes across all stores.

Appendix Figure A.1 illustrates that this pricing pattern is not limited to this specific good,

nor the sugar/sugar substitute category.3

3Alternatively, see DellaVigna and Gentzkow (2019) for similar pricing patterns found in the Nielsen
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3 Price Synchronization within Retail Chains

Figure 1 and Appendix Figure A.1 helped provide illustrative examples of price synchro-

nization within retail chains across various products and product categories. This section

attempts to quantify these illustrative examples. The first subsection documents stylized

facts on the timing of price changes. The second subsection conducts a variance decompo-

sition to help analyze both the direction and magnitude of price changes.

3.1 Price Synchronization

Table 2 presents statistics for the synchronization in the timing of price changes within a

retail chain. Statistics in the first column are conditional on at least one price change in

a store.4 The frequency represents the percent of weeks in which the specific row occurred

(averaged over goods and chains). The interpretation of the first row in the first column is

conditional on at least one store within a retailer changing its price, more than one store

belonging to that chain changed their price 69.2% of the time. Increasing the restriction that

at least half of stores in the chain change their price has a negligible effect on the frequency.

We see that, conditional on a price change, all stores in that chain change their price 42.9%

of weeks. This is about a 25 percentage point reduction compared to the frequency for at

least half of stores. However, much of this reduction can be accounted for by one store not

changing its price.

The second and third columns of Table 2 serve as a check that these price changes are

in the same direction. We see that requiring price changes to be in the same direction

reduces the frequency of synchronized changes by about 10 percentage points across all

specifications. Conditional on a price increase in one store, more than one store in the

same chain increases its price 60.8% of the time. The frequencies for all stores in a chain

scanner dataset across various product categories.
4I follow a similar procedure as Hee Hong et al. (2021) and Alvarez et al. (2016) in limiting a price change

to be at least one cent and less the infinity. Recall, posted prices are not provided by the IRI, and instead I
calculate price as Pijt =

Revijt
Qijt

. Thus, fractional price changes may occur due to this method. Eliminating

infinite price changes further helps account for measurement error.
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Table 2: Synchronization of Price Changes

Any Change Price Increases Price Decreases

More than One Store 69.2% 60.8% 62.4%
At least Half of Stores 68.7% 54.1% 55.6%
All but One Store 56.4% 43.9% 44.9%
All Stores 42.9% 30.8% 32.1%

Note: This table presents statistics for the synchronization of price changes within a retail chain. All statistics
are conditional on at least one price change in a store. The frequency represents the percent of weeks in
which the specific row occurred (averaged over goods and chains). The interpretation of the first column
in the last row is conditional on at least one store within a retailer changing its price, all stores belonging
to that chain changed their price 43% of the time. The second and third columns document whether these
price changes are in the same direction. Thus, conditional on a price increase/decrease within a chain, all
stores change their price 30.8%/32.1% of the time.

increasing/decreasing their price in the same period are 30.8% and 32.1%, respectively.

Differences in the conditional price increase and price decrease frequencies are less than 2

percentage points across all specifications.

3.2 Variance Decomposition

Table 2 suggests that retailers highly synchronize the timing of their price changes across

stores. These price changes are also typically in the same direction. However, the statistics

presented do not provide information on the magnitude of these price changes. Although all

stores in a chain change their price in the same direction over 30% of the time, the size of

price changes may vary significantly across stores. To account for this, I conduct a variance

decomposition of store’s relative prices. This variance decomposition also helps account

for the feature shown in Figure 1 where individual stores are often a week early or late to

update their price to the retail chain price which can bias the previous price change statistics

downward.

I begin by modelling the log price (pj,r,t) for store j belonging to retail chain r in week t

as

pj,r,t = αt + δj + γr,t + εj,r,t (1)
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where αt is a week fixed effect, δj is a store fixed effect, γr,t is a chain-by-week fixed effect,

and εj,r,t is the residual. This equation is estimated separately for each good which eliminates

the need to include a product component.5 Using these estimated parameters, I perform the

following variance decomposition for each good:

V ar(pj,r,t − δ̂j) = V ar(α̂t) + V ar(γ̂r,t) + V ar(ε̂j,r,t) (2)

I normalize pj,r,t by δ̂j, the average price in a store, in order to analyze price variation over

time rather than constant differences in the average price across chains.6 Thus, the total

variance of the relative price is decomposed into three components: price changes that occur

across all stores in the same week regardless of the retail chain (α̂t), price changes that occur

across all stores in the same week within a retail chain (γ̂r,t), and individual store-level price

changes (ε̂j,r,t).

Panel (a) of Figure 2 presents the weighted averages from the variance decomposition.

The week component αt estimate of 11% suggests that price changes are not highly correlated

across chains. However, the chain-week component γr,t explains 62% of price variation on

average. This suggests that price changes and their magnitude are highly correlated for

stores within the same chain. Although the results suggest that individual store managers do

maintain some flexibility when changing their price with the store component εj,r,t explaining

about one quarter of relative price dispersion.

Panel (b) plots the distribution of the estimated chain component for all goods. The

vertical dashed line represents the cutoff for the first quartile at 64.5%. The minimum vari-

ation explained by the chain-week component is 35.7%. Overall, the chain-week component

can explain at least half of the price variation for about 625 out of the 655 goods that the

5Estimation follows a similar procedure used in Daruich and Kozlowski (2021) and Kaplan et al. (2016).
See Appendix A.1.1 for more details.

6The variance decomposition for relative price variation over time and constant differences in the average
price across chains need need not necessarily be the same. As detailed in Crucini and Telmer (2020), the
decomposition for relative price variation over time is the relevant statistic for business cycle models such as
the one in this paper.
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Figure 2: Variance Decomposition

(a) Component Averages (b) Chain Component

Note: This figure presents the results of the variance decomposition in Equation (2). The variance decom-
position is conducted separately for each good. Panel (a) presents the mean estimate for each component
of the decomposition. Panel (b) plots the distribution of the chain-week variance (γ) over all goods. The
vertical dashed line represents the cutoff for the first quartile.

decomposition was computed for.

Robustness Checks I perform several robustness checks of the above variance decomposi-

tion. As the behavior of temporary sale prices often behave differently than regular prices

(Eichenbaum et al., 2011; Anderson et al., 2017), I replace temporary sale prices with the

previous regular/non-sale price. I follow the method in Eden et al. (2021) of defining a tem-

porary sale price as a 10% drop in price followed by a price equal to or above the pre-sale price

within four weeks.7,8 Second, I estimate the variance decomposition using monthly rather

than weekly prices.9 Lastly, I perform the variance decomposition with the combination of

these two restrictions.

The results of these robustness checks are presented in Appendix Figure A.2. Replac-

ing temporary sale prices with the last observed regular/non-sale observation reduces the

weighted average chain-week component by about 15 percentage points to 47%. Nearly all

7Limitations of the IRI sales indicator are provided in Eden et al. (2021).
8This definition is similar to others in the literature (Coibion et al., 2015; Nakamura and Steinsson, 2008).
9I follow Gagnon and López-Salido (2020) in selecting the weekly price observation that spans the 15th

of the month to reflect BLS price sampling methods.
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of this decline is a result of an increase in the idiosyncratic store component which is now

41.5%. Sampling monthly observations rather than weekly observations has negligible ef-

fects on the results for the analogous sale/non-sale price decompositions. In the weakest

specification (monthly/non-sale prices), the chain-week component still accounts for at least

half of relative price variation for 380 of the 655 goods. Loosening this restriction slightly

to 40% of price variation returns the number of goods to a similar level as in the baseline

specification, 624 out of 655.

4 Menu Cost Model with Retail Chains

This section analyzes a menu cost model extended to account for price synchronization within

retail chains. I begin by documenting store-level pricing decisions in a standard menu cost

model without retail chains as in Nakamura and Steinsson (2008).

4.1 Standard Model

Consider a firm (z) with real profits given by:

Πt(z) =
pt(z)

Pt
ct(z)− Wt

Pt
Lt(z)−KWt

Pt
It(z) (3)

where Pt represents the aggregate price level. The first term pt(z)
Pt
ct(z) is the firm’s revenue

where pt(z)
Pt

is the firm’s relative price and ct(z) the firm’s demand. The firm’s total cost

of producing in period t is the real wage Wt

Pt
multiplied by the quantity of labor demanded

Lt(z). The last term is the firm’s menu cost as firm’s must hire an additional K units of

labor to change its price. It(z) is an indicator variable that is equal to one if the retailer

changes its price in period t and zero otherwise. Thus, the firm only pays the menu cost if

they change their price.
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Assume that the demand for the firm’s good, ct(z), is proportional to its relative price:

ct(z) = C

(
pt(z)

Pt

)−θ
(4)

where C is a constant which determines the size of the market. The firm produces its good

using a linear technology:

yt(z) = At(z)Lt(z) (5)

where yt(z) denotes the output of the firm in period t and At(z) denotes the productivity of

the firm. Markets clear in equilibrium, so that yt(z) = ct(z). Using equations (4) and (5),

we have that Lt(z) = ct(z)/At(z).

Following Nakamura and Steinsson (2008), I assume that the real wage is constant and

equal to Wt

Pt
= θ−1

θ
. Substituting the real wage, firm demand, and market clearing conditions

into (3) yields

Πt(z) = C

(
pt(z)

Pt

)−θ (
pt(z)

Pt
− θ − 1

θ

1

At(z)

)
−Kθ − 1

θ
It(z) (6)

The firm then chooses its price at time t to maximize discounted profits:

V
(
pt−1(z)/Pt, At(z)

)
= max

pt(z)
[Πt(z) + βEtV

(
pt(z)/Pt+1, At+1(z)

)
] (7)

where V (·) is the firm’s value function and β is the discount factor. The firm’s state variables

are its relative price pt−1/Pt and productivity level At(z) as evident from (6).

Uncertainty arises from aggregate shocks to the price level and idiosyncratic productivity

shocks. The process for the price level follows:

logPt = µ+ logPt−1 + ηt (8)
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where ηt ∼ N
(

0, σ2
η

)
. Productivity follows an AR(1) process:

logAt(z) = ρ logAt−1(z) + εt(z) (9)

where εt(z) ∼ N
(
0, σ2

ε

)
.

4.2 Retail Chain Extension

I extend the menu cost model to account for retail chain pricing by including a common

retail component to the store’s productivity process. Thus, in the extended model, a store

z which belongs to retail chain r follows the productivity process:

logAt(z) = ρ logAt−1(z) + εt(z) (10)

= ρ logAt−1(z) + εt(r) + εt(z) (11)

where εt(r) ∼ N
(
0, σ2

εr

)
and εt(z) ∼ N

(
0, σ2

εz

)
are independent. Similarly, retail chain r

has a productivity process that follows logAt(r) = ρ logAt−1(r) + εt(r).

I also assume that the retailer sets the price of store z ∈ r in period t with probability

λ, and store z sets its optimal price with probability 1 − λ. When determining store z’s

price, the retailer has the added restrictions that they (1) can set only one price for all stores

belonging to r and (2) observe only chain-level state variables. The profit function of the

retail chain can then be written as:

Πt(r) =
∑
z∈r

C (pt(r)
Pt

)−θ(
pt(r)

Pt
− θ − 1

θ

1

ÊtAt(z)

)
−KWt

Pt
It(r)

 (12)

where Êt denotes the chain’s expectation operator. Using Equation (11), we have ÊtAt(z) =

At(r).
10 These assumptions simplify the retailer’s problem and allow the retailer to behave

10Recall that At(z) = ρAt−1(z) + εt(z). Consider the MA(∞) representation At(z) =
∞∑
i=0

ρiεt−i(z) =
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similarly to an individual store with the following profit and value functions:

Πt(r) = C

(
pt(r)

Pt

)−θ (
pt(r)

Pt
− θ − 1

θ

1

At(r)

)
−Kθ − 1

θ
It(r) (13)

V
(
pt−1(r)/Pt, At(r)

)
= max

pt(r)
[Πt(r) + βEtV

(
pt(r)/Pt+1, At+1(r)

)
] (14)

4.3 Calibration

I calibrate the model to match four empirical moments separately for each of the 655 goods in

the sample. These moments are the (1) mean fraction of adjusted prices, (2) mean absolute

size of a (non-zero) price change, (3) the fraction of small price changes, and (4) the chain-

week component of the variance decomposition in Section 3.11,12 I match these moments

using the menu cost (K/C), the volatility of the retailer’s productivity shock (σεr), the

volatility of the store’s total productivity shock (σεz), and the probability that the retailer

sets an individual store’s price (λ).

Table 3 presents the set of calibrated parameters. Means are presented for the internally

calibrated parameters which vary across goods. The mean estimated parameters are K/C =

0.018, σεr = 0.035, σεz = 0.072, and λ = 0.499. The remaining parameters (β, θ, µ, ση, ρ) are

set similar to Nakamura and Steinsson (2008) or Nakamura and Steinsson (2010) and do

not vary across goods. I set the discount factor to β = 0.961/12, the elasticity of demand to

θ = 4, the persistence of both retailer and store-level productivity to ρ = 0.7. The inflation

process follows µ = 0.0022 and ση = 0.0028.13

∞∑
i=0

ρi[εt−i(r) + εt−i(z)]. Separating the retail and store terms and taking expectations yields: ÊtAt(z) =

Êt[
∞∑
i=0

ρiεt−i(r) +
∞∑
i=0

ρiεt−i(z)] = At(r) +
∞∑
i=0

ρiÊt[εt−i(z)] = At(r).

11I use the monthly regular/non-sale price empirical statistics when calibrating the model.
12Using aggregate data, it is common to use the median fraction of adjusted prices and median size of price

changes due to aggregation issues (Baharad and Eden, 2004; Bils and Klenow, 2004). The issues regarding
the mean and median are less pronounced when using sector-level data. I follow Nakamura and Steinsson
(2010) and Carvalho and Kryvtsov (2021) and use the mean for each good.

13The inflation parameters are not taken directly from Nakamura and Steinsson (2008), but rather I follow
their procedure. I calibrate µ and ση using CPI data from 2001-2007 to correspond with the sample period
in this paper.
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Table 3: Benchmark Parameters

Internally Calibrated (Means)
Probability Retailer sets Price λ = 0.499
Retailer Productivity Shock Std. Dev. σεr = 0.035
Store Productivity Shock Std. Dev. σεz = 0.072
Menu Cost K/C = 0.018

Remaining Parameters
Discount Factor β = 0.961/12

Elasticity of Demand θ = 4
Persistence of Productivity ρ = 0.7
Mean Price Level Growth µ = 0.0022
Standard Deviation of Price Level Growth ση = 0.0028

Note: This table presents the parameters used in the benchmark model. The menu cost, retailer productivity
shock volatility, store-level productivity shock volatility, and probability that the retailer sets the store price
are internally calibrated to match the mean fraction of adjusted prices, mean absolute size of a (non-zero)
price change, the fraction of small price changes, and the chain-week component of the variance decomposition
in Section 3. The remaining parameters are set similar to either Nakamura and Steinsson (2008) or Nakamura
and Steinsson (2010).

4.4 Model Intuition

Although the retail pricing assumptions initially appear strong, they lend themselves to

an intuitive interpretation of pricing.14 Pricing in this environment can be seen as (1) the

retailer sets a target price for all stores belonging to its chain using chain-level state variables.

This target price can reflect shocks to all stores in the chain such as warehousing/production

costs. (2) Stores choose to keep the retail chain price or set their own price. Allowing

stores to deviate from the retail-level price with probability 1− λ serves as a reduced form

modelling approach for the extra cost that a retailer needs to pay to observe idiosyncratic

14The retail chain assumptions of (1) correlated productivity shocks and (2) the retailer constraint are
built upon previous studies (in addition to the results in Section 3 in this paper). For example, Nakamura
and Steinsson (2013) state that productivity shocks may “stand in for other, unmodeled sources of variation
in firms’ desired prices” in menu cost models. Hitsch et al. (2019) show that stores belonging to the same
retail chain have similar demand in the same market. Furthermore, costs such as wholesale prices are likely
similar for stores belonging to the same retailer which play a significant role in price determination (Anderson
et al., 2017).
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demand/supply shocks or the cost a store pays for deviating from the chain price.15

Figure 3 provides an example pricing path for a given retailer-store combination. Each

panel corresponds to the same model sample period. The black line plots the aggregate

price level in all three panels. Panel (a) plots the retailer’s target price in red and its inverse

productivity in blue. Corresponding with Step (1), we see that the retailer adjusts its price

to account for both its productivity level and the aggregate price level.

Panel (b) plots the price path for an individual store belonging to the retailer in panel

(a). Panel (c) helps highlight the main intuition of the model. The red line in panel (c) plots

the retailer’s price. The blue line highlights store-level deviations from the chain’s price.

The store sets its price at the chain-level price for most of the sample. Corresponding with

Step (2), we see that the store chooses a different price when its idiosyncratic productivity

deviates enough from the chain’s productivity. This is particularly evident in period seventy

where the store’s inverse productivity is much larger than the chain’s productivity. Overall,

the model does well in replicating price paths similar to the data where store deviations

from the retail price occur infrequently. Furthermore, when deviations do occur they tend

to coincide with periods in which the retail chain changes its price. The store then resets to

the chain price within several periods similar to the price paths seen in Figure 1.

5 Selection Effects in Retail Chain Pricing

The previous sections have analyzed how retail chains are an important determinant in store-

level pricing decisions. This section aims to relate the effect of uniform pricing within retail

chain chains to the macroeconomy. Specifically, this section analyzes the selection effect—

the concept that firms time their price changes optimally in response to aggregate shocks

rather than change their prices at random. The first subsection briefly describes the intuition

behind selection effects and the estimation procedure. The second subsection discusses the

results.

15I tested an alternative version of the model where stores pay a cost for deviating from the chain price.
The model yielded similar pricing decisions.
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Figure 3: Example Pricing Decision

(a) Retail Price Path (b) Store Price Path

(c) Store Deviations

Note: This figure presents a standard price path for both a retailer and a store. The black line plots
the aggregate price level in both panels. Panel (a) plots the retailer’s target price in red and its inverse
productivity in blue. Panel (b) is analogous to panel (a) with observations at the store level. Panel (c) plots
the retailer price in red and store-level deviations from the retailer price in blue.

5.1 Quantifying Selection Effects

To analyze how retail chains affect price selection, I simulate the calibrated retail chain model

in Section 4. For each good, I compute the total number of chains in the IRI dataset as well

as the average number of stores per chain rounded to the nearest whole number. The total

number of stores in the simulation is then given by the total number of chains multiplied
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by the average number of stores per chain.16 The same inflation process is drawn in each

simulation for all 655 goods. The model is simulated for 300 periods with a burn-in sample

of 100 periods for 400 periods in total.

After simulating the retail chain model, I perform a counterfactual analysis where stores

do not adhere to the retail-chain constraint. Each store faces the same inflation process and

analogous productivity process in the retail-chain simulation. Thus, differences between the

models are not driven by different productivity draws and solely by every store selecting its

unconstrained optimal price in each period.

5.1.1 Specification

After simulating each model, I perform the following regression for each good:

∆ log pjt = α + βP∆ logPt + βA∆ logAjt + εjt (15)

where ∆ log pjt is the change of the store j’s log price in period t, ∆ logPt is the change of

the log price level, and ∆ logAjt is the change in the store’s nominal cost.

In this circumstance, βP represents my measure of the selection effect.17 As the specifi-

cation is in logs, βP represents the effect of a 1% increase in the aggregate price level on the

store’s price on average. For example, if βP = 0.2, then a 1% increase in the aggregate price

level leads to a 0.2% increase in a store’s price on average.

5.1.2 Intuition

The specification in equation (15) lends itself to an intuitive interpretation of the selection

effect. To see this, consider reducing the variance of the store’s idiosyncratic productivity

16Given this calibration, the total number of stores may differ slightly in the model compared to the data.
Overall, these differences tend to be small and are unlikely to affect the results.

17Note that this is not a structural definition of the selection effect as in Caballero and Engel (2007);
Carvalho and Schwartzman (2015); Dotsey and Wolman (2018); Karadi and Reiff (2019). Instead, this
specification serves as a reduced form manner to estimate the responsiveness of micro prices to aggregate
shocks.

20



process in the standard menu cost model. Nakamura and Steinsson (2010) show reducing

this variance leads nominal shocks to have less real effects on the economy. This is a result

of the average inflation rate becoming a more important determinant in stores’ pricing de-

cisions. This is similar to the result in Golosov and Lucas (2007) who show in the absence

of idiosyncratic shocks that their model converges to Caplin and Spulber (1987) in which

nominal shocks have no real effects on the economy. In this setup, the coefficients βP and

βA can be loosely interpreted as the weight that a store places on the aggregate price level

and its idiosyncratic productivity, respectively, when choosing to change its price. Thus, as

βP increases, stores place more weight on the aggregate price level when timing and deciding

the size of their price changes. As a result, the real effects of nominal shocks would decrease.

5.2 Results

Figure 4 presents the results of equation (15). The bar graphs in red and blue plot the

distribution of βP over goods for the unconstrained and constrained retail-chain models,

respectively. A KS-test suggests that the distributions are significantly different with a max-

imum distance of 0.75. The weighted mean βP for the constrained and unconstrained models

are 0.25 and 0.09, respectively. This difference suggests that the standard menu cost model

without retail chains significantly underestimates the degree of selection. Consequently, this

suggests the standard menu cost model overestimates the degree of monetary non-neutrality

by not accounting for price synchronization within retail chains.

5.3 CalvoPlus Model Extension

I show that the baseline results hold in a richer setting using the CalvoPlus model of Naka-

mura and Steinsson (2010). First-generation menu cost models such as the baseline model in

this paper fail to match several empirical facts about price changes (Klenow and Kryvtsov,

2008; Midrigan, 2011). In light of this, it has become common to incorporate a random

menu cost component as in the CalvoPlus model (Alvarez et al., 2016; Hee Hong et al., 2021;
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Figure 4: Selection Effects with Retail Chain Pricing

Note: This figure plots the distributions of the average percent response of a store’s price to a 1% increase
in the aggregate price level (βP ) from equation (15) for the unconstrained model in red and the retail-chain
model in blue. A KS-test suggests that the distribution are significantly different with a maximum difference
of 0.75.

Carvalho and Kryvtsov, 2021).18

The CalvoPlus model incorporates free price changes with probability α. When calibrat-

ing the CalvoPlus model, I set the probabilty of a free price change equal to the empirical

frequency of small price changes for each good. Calibration then proceeds as in Section 4.

These parameters are presented in Appendix Table A.1.

Table 4 present the results of estimating Equation (15). The first row presents the

weighted mean (over goods) elasticity of store prices with respect to the aggregate price

level (βP ). The second row presents the weighted mean elasticity with respect to the store’s

idiosyncratic productivity (βA). The results of the CalvoPlus model with and without retail

chains are presented in columns (4) and (5), respectively. For comparison, the results of

18Other methods have been used to help match the empirical price statistics such as altering the produc-
tivity shock process (Gertler and Leahy, 2008) and introducing economies of scope (Midrigan, 2011).
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Table 4: Selection Effects in Retail Chain Pricing

Baseline Model CalvoPlus

Retail Chain Standard (1)/(2) Retail Chain Standard (4)/(5)
(1) (2) (3) (4) (5) (6)

Price Level (βP ) 0.25% 0.09% 2.72 0.24% 0.1% 2.26
[0.09, 0.41] [0.008, 0.18] [0.09, 0.38] [0.03, 0.18]

Productivity (βA) 0.44% 0.61% 0.74 0.40% 0.55% 0.72
[0.21, 0.67] [0.32, 0.88] [0.18, 0.61] [0.32, 0.77]

Note: This table presents the results of estimating Equation (15). The first row presents the weighted mean
(over goods) elasticity of store prices with respect to the aggregate price level (βP ). The second row presents
the weighted mean elasticity with respect to the store’s idiosyncratic productivity (βA). Columns (1) and (2)
present the estimated elasticities in the baseline model with and without retail chains, respectively. Column
(3) presents the estimated retail chain elasticity relative to the standard model. Columns (4)-(6) present
similar results with the CalvoPlus extension of random free price changes.

the baseline model are presented in columns (1) and (2). Columns (3) and (6) presents the

estimate for the retail chain model divided by estimate for the model without retail chains.

Confidence intervals at the 95% level are presented in brackets.19

Comparing columns (1) and (4), we see that the baseline model and CalvoPlus model

yield similar results when accounting for retail chains. The weighted mean aggregate price

elasticities are 0.25% and 0.24%, respectively. The confidence intervals suggest that these

estimates are statistically significant over goods. Overall, the CalvoPlus model typically

estimates lower elasticities compared to the baseline model. However, these differences tend

to be small, and they have little effect on the relative elasticities. The elasticity estimated

with retail chains relative to that estimated without chains is 0.24%/0.1% = 2.26. Thus,

both the baseline model and the CalvoPlus model suggest that the inclusion of retail chains

more than doubles the degree of selection effects.

19Confidence intervals are constructed by calculating the weighted standard deviation over goods for each
estimate.
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6 Conclusion

This paper examines selection effects in retail chain pricing. Using scanner-level data, I find

that retail chains synchronize the timing and magnitude of their price changes across stores.

A variance decomposition suggests that retail chains account for almost two-thirds of stores’

relative price dispersion on average. This relationship is prevalant across almost all goods in

my sample with the retail chain component of the decomposition accounting for at least half

of price variation for 625 of the 655 goods. I develop a menu cost model with retail chain

price synchronization to account for this finding. After calibrating the model separately for

all 655 goods in my sample, I then measure selection by regressing the change in a store’s

log price on the change in the aggregate price level. My estimates suggest that a 1% increase

in the aggregate price level leads to a 0.25% increase in a store’s price on average. This

effect is more than double suggested by an analogous simulation of the standard menu cost

model without retail chains. This relationship suggests that the standard menu cost model

overestimates the degree of monetary non-neutrality by ignoring synchronization in retail

chain pricing.
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A Appendix

A.1 Empirics

Figure A.1: Retail Chain Price Synchronization

(a) Alternative Sugar Product (b) Mustard Product

(c) Soup Product (d) Facial Tissue Product

Note: This figure plots examples of uniform pricing within a retail chain. Each point on the y-axis represents
an individual store belonging to the retail chain. Darker (lighter) shades represent higher (lower) prices.
Missing values are represented by white space. Panel (a) presents an example for alternative sugar product
compared to Figure 1. Panels (b), (c), and (d) present an example for a mustard, soup, and facial tissue
product, respectively.
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A.1.1 Variance Decomposition

The variance decomposition in Section 3 began by modelling prices as

pj,r,t = αt + δj + γr,t + εj,r,t (A.1)

where αt was a week fixed effect, δj was a store fixed effect, γr,t was a chain-by-week fixed
effect, and εj,r,t was the residual. Due to the size of the dataset, I used the method of iterative
means to estimate the fixed effects following Daruich and Kozlowski (2021) and Kaplan et
al. (2016). The order of the estimation is (1) δj, (2) αt, (3) γr,t, and (4) εi,j,t. Thus, each
fixed effect is estimated as (good index i is omitted as estimation is conducted separately
for each good):

δ̂j =
1

Tj

∑
t

pj,r,t Store Component (A.2)

α̂t =
1

Nj,t

∑
j

(
pj,r,t − δ̂j

)
Week Component (A.3)

γ̂r,t =
1

Nj∈r,t

∑
j∈r,t

(
pj,r,t − δ̂j − α̂t

)
Chain-Week Component (A.4)

ε̂j,r,t = pj,r,t − δ̂j − α̂t − γ̂r,t Residual Component (A.5)

where Tj is the number of weeks that store j has a posted price, Nj,t is the total number
stores in week t, and Nj∈r,t is the total number of store observations that belong to retail
chain r in week t.

After estimating the fixed effects, the following variance decomposition of relative prices
was performed V ar(pj,r,t− δ̂j) = V ar(α̂t) + V ar(γ̂r,t) + V ar(ε̂j,r,t). Several assumptions lead
to the absence of covariance terms in this equation. First, E[αt] = 0. Thus, deviations from
a store’s average price are zero in expectation. Second, in a given week, deviations from
a store’s relative price are zero in expectation after accounting for the week component,
E[γr,t|t] = 0.
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Figure A.2: Variance Decomposition (Robustness Checks)

Non-sale Observations

(a) Component Averages (b) Chain Component

Monthly Observations

(c) Component Averages (d) Chain Component

Monthly Non-sale Observations

(e) Component Averages (f) Chain Component

Note: This figure presents the results of the variance decomposition in Equation (2). The variance decom-
position is conducted separately for each good. Panel (a) presents the mean estimate for each component
of the decomposition. Panel (b) plots the distribution of the chain-week variance (γ) over all goods. The
vertical dashed line represents the cutoff for the first quartile.
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A.2 Model

Table A.1: CalvoPlus Parameters

CalvoPlus Parameter (Mean)
Probability of Free Price Change α = 4.8%

Internally Calibrated (Means)
Probability Retailer sets Price λ = 0.498
Retailer Productivity Shock Std. Dev. σεr = 0.034
Store Productivity Shock Std. Dev. σεz = 0.070
Menu Cost K/C = 0.019

Remaining Parameters
Discount Factor β = 0.961/12

Elasticity of Demand θ = 4
Persistence of Productivity ρ = 0.7
Mean Price Level Growth µ = 0.0022
Standard Deviation of Price Level Growth ση = 0.0028

Note: This table presents the parameters used in the CalvoPlus model. The CalvoPlus parameter is set
to the frequency of small price changes. The menu cost, retailer productivity shock volatility, store-level
productivity shock volatility, and probability that the retailer sets the store price are internally calibrated
to match the mean fraction of adjusted prices, mean absolute size of a (non-zero) price change, the fraction
of small price changes, and the chain-week component of the variance decomposition in Section 3. The
remaining parameters are set similar to either Nakamura and Steinsson (2008) or Nakamura and Steinsson
(2010).
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